Data Structures Overview

1
2
3
4
5
6
7
8
9
10
11
12
13
14
graph LR;
数据结构-->线性结构
数据结构-->逻辑结构

线性结构-->线性表
线性表-->数组Array
线性表-->链表LinkedList
线性结构-->Hash表
线性结构-->栈Stack
线性结构-->队列Queue

逻辑结构-->树Tree
逻辑结构-->堆Heap
逻辑结构-->图Graph
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
package org.data.structurs.graph;

import java.util.Arrays;
import java.util.Vector;

public class Graph {

private int n; // 节点数
private int m; // 边数
private boolean directed; // 是否为有向图
private Vector<Integer>[] adjacency; // 图的具体数据

// 构造函数
public Graph(int n, boolean directed) {
assert n >= 0;
this.n = n;
this.m = 0; // 初始化没有任何边
this.directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
this.adjacency = (Vector<Integer>[]) new Vector[n];
for (int i = 0; i < n; i++)
this.adjacency[i] = new Vector<Integer>();
}

public int V() {
return n;
} // 返回节点个数

public int E() {
return m;
} // 返回边的个数

// 向图中添加一个边
public void addEdge(int v, int w) {
assert v >= 0 && v < n;
assert w >= 0 && w < n;
this.adjacency[v].add(w);
if (v != w && !directed)
this.adjacency[w].add(v);
m++;
}

// 验证图中是否有从v到w的边
boolean hasEdge(int v, int w) {
assert v >= 0 && v < n;
assert w >= 0 && w < n;
for (int i = 0; i < this.adjacency[v].size(); i++)
if (this.adjacency[v].elementAt(i) == w)
return true;
return false;
}

// 返回图中一个顶点的所有邻边
// 由于java使用引用机制,返回一个Vector不会带来额外开销,
public Iterable<Integer> adj(int v) {
assert v >= 0 && v < n;
return this.adjacency[v];
}

@Override
public String toString() {
return "Graph{" +
"n=" + n +
", m=" + m +
", directed=" + directed +
", adjacency=" + Arrays.toString(adjacency) +
'}';
}

public static void main(String[] args) {
//初始化一个有5个节点的图
Graph graph = new Graph(5, true);
System.out.println(graph);
//添加节点之间的关系
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(0, 3);
graph.addEdge(1, 2);
graph.addEdge(2, 4);

System.out.println(graph);
}
}